Commit 5c99b0a9 by 泽锋 李

利润最大化,新增历史日均跟预测日均

parent 3947db13
......@@ -75,6 +75,15 @@ namespace AutoTurnOver.Models
/// </summary>
[Description(@"7天日均销量")]
public decimal sales_avg_7 { get; set; }
/// <summary>
/// 加权日均销量
/// </summary>
public decimal daily_weighted_sales { get; set; }
/// <summary>
/// 供应链长度预测销量
/// </summary>
public decimal turnover_sales { get; set; }
/// <summary>
/// 采购单价
......@@ -296,5 +305,16 @@ namespace AutoTurnOver.Models
public class dc_report_profit_analysis_dto: dc_report_profit_analysis {
public string product_code { get; set; }
public decimal? weight { get; set; }
/// <summary>
/// 预测日均销量
/// </summary>
public decimal forecast_daily_weighted_sales
{ get {
if (turnover_days <= 0) return 0;
else
{
return Math.Round(turnover_sales / turnover_days, 2);
}
} }
}
}
......@@ -732,9 +732,9 @@ namespace AutoTurnOver.Services
if (list == null || list.Count <= 0) break;
DataTable table = new DataTable();
string[] cols = new string[] { "sku","商品编码", "国家", "仓库类型", "仓库", "默认调拨方式", "180天日均", "90天日均", "30天日均","7天日均", "采购单价", "单位重量", "实际建议周转数",
string[] cols = new string[] { "sku","商品编码", "国家", "仓库类型", "仓库", "默认调拨方式", "180天日均", "90天日均", "30天日均","7天日均","加权日均销量","预测日均销量", "采购单价", "单位重量", "实际建议周转数",
"实际建议周转金额", "实际周转数", "实际周转运费", "实际运费单价", "海运周转数(推荐海运)", "海运周转金额", "海运周转运费", "空运周转数(推荐空运)", "空运周转金额",
"空运周转运费","实际-海运运费差值", "实际-海运周转采购金额差值" ,"实际-空运运费差值", "实际-空运周转采购金额差值", "海运-空运运费差值", "海运-空运周转采购金额差值", "安全库存数量", "空运周转天数",
"空运周转运费","实际-海运运费差值", "实际-海运周转采购金额差值" ,"实际-空运运费差值", "实际-空运周转采购金额差值", "海运-空运运费差值", "海运-空运周转采购金额差值", "安全库存数量", "空运周转天数", "实际周转天数",
"海运周转天数", "30天预测销量海运运费-实际周转运费金额", "30天预测销量空运运费-实际周转运费金额", "30天预测销量空运运费-海运周转运费金额"
, "差值(实际-海运)/实际周转采购金额占比" , "差值(海运-空运)/实际周转采购金额占比" , "差值(空运-实际)/实际周转采购金额占比"
, "海运与实际运费差额/库存差额" , "空运与实际运费差额/库存差额" , "30天销量海运与实际运费差额/库存金额" , "30天销量空运与实际运费差额/库存金额" , "补海运周转数","补海运周转金额"
......@@ -753,11 +753,14 @@ namespace AutoTurnOver.Services
row["国家"] = itemData.country;
row["仓库类型"] = itemData.warehouse_type;
row["默认调拨方式"] = itemData.transport_type;
row["实际周转天数"] = itemData.turnover_days;
row["180天日均"] = itemData.sales_avg_180;
row["90天日均"] = itemData.sales_avg_90;
row["30天日均"] = itemData.sales_avg_30;
row["7天日均"] = itemData.sales_avg_7;
row["加权日均销量"] = itemData.daily_weighted_sales;
row["预测日均销量"] = itemData.forecast_daily_weighted_sales;
row["采购单价"] = itemData.unit_price;
row["单位重量"] = itemData.weight;
row["实际建议周转数"] = itemData.quantity_final_advise;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment